
ETTE-RD 74-0169 

PHYSI CAL R EV I E W A VO LUM E 9, N UMB E R 4 APRIL 197 4 

Dynamic-local-field approximation for the quantum solids 

Richard D. Etters* 
Colorado state Univer sit y. Fort Coll ins. Colorado 80521 

Ronald L. Danilowicz 
NASA L ewis R esear ch Center. Cleveland, Ohio 44135 

(Received 5 October 1973) 

A local-molecular-field description for the ground-state properties of the quantum solids 
is presented. The dynamical behavior of atoms contributing to the local field, which acts 
on an arbitrary pair of test particles, is incorporated by decoupling the pair correlations 
between these field atoms. The energy, pressure, compressibility, single-particle-distri­
bution function, and the root-mean-square atomic deviations about the equilibrium lattice 
sites are calculated for H2, 3He, and 4He over the volume range 5 < V :S 24.5 cm3/ mole. The 
results are in close agreement with existing Monte Carlo calculations wherever comparisons 
are possible. At very high pressures the results agree with simplified descriptions which 
depend on negligible overlap of the system wave function between neighboring lattice sites. 

I. INTRODUCfION 

The quantum solids have been difficult to under­
stand analytically because of their large zero-point 
motion. This motion invalidates standard semi­
classical approaches and those quantum-mechani­
cal calculations which do not account for the short­
ranged pair correlations between atoms. 

Perhaps the most reliable theoretical description 
of the ground- state properties of quantum solids 
are the Monte Carlo calculations of Hansen and 
co-workers1

•
2 on helium and Bruce 3 on hydrogen. 

This method is a quantum-mechanical analog of the 
biased random-walk procedure described by Wood 
and Parker.4 Classically, the bias is established 
by the Boltzmann-probability distribution; where­
as, quantum mechanically, it is given by the ab­
solute square of the ground-state wave function 
14>1 2. A parametrized form 'is generally chosen 
for 4> and the parameters are determined varia­
tionally by minimizing the ground-state energy. 

A form for the N -particle wave function which 
satisfies the gross requirements of the system is 

N H 

4>(rj , ... , rR) = II cp (ri) II !(ri K)' (1) 
i = 1 j < K 

where the <per i) == cp (ri -Hi) are single-particle 
functions localized about the equilibrium lattice 
sites Hi' They exhibit spatial order characteristic 
of the solid. The t N(N -1) functions !(r jK ) cor­
relate the motion of all pairs of particles. The 
limiting behavior for ! (r) is limr --oo! (r) = 0, 
limr -~f(r) = 1. Hence, these functions lower the 
probability of finding two molecules close together 
and they have no effect at large separations. 

Although there are a number of aspects of the 
Monte Carlo method which can lead to significant 

9 

error, 4 it is generally believed that this approach 
is fairly reliable. For this reason, the results of 
our approximate theory are closely compared with 
the Monte Carlo calculations. Of course, com­
parisons with experiment are also made but it is 
difficult to draw definite conclusions from this 
information. The difficulty is that the semiphe­
nomenological interaction potential, incorporated 
into the calculation, is of uncertain quality.5 As 
pointed out by Hansen6 and others, small differ­
ences in presently acceptable descriptions of the 
helium pair potential, Significantly alter calculated 
results. 

An important objective of this work is to provide 
an approximate yet accurate description of quan­
tum solids. The detailed nature of these approxi­
mations are expected to give inSight into the 
systems dynamical character by pinpointing those 
particular aspects of the many-body behavior 
which must be accurately described and those 
which are of lesser importance. 

II , MOLECULAR-FIELD DESCRIPTION 

A, General development 

The expectation value of the Hamiltonian for an 
N -particle system is 

(H)= (4)14>) -1 (4> 1- ~ t v~+ L: V(r ii )14», (2) 
1=1 j ( i 

where V(r ) is the pair potential and (4)14>) is the 
normalization integral. To facilitate comparisons 
with other work, V(r) is represented by the 
Lennard-Jones (6-12) potential: 

V(r) = 4E [(0/ r) 12 _ (0/ r) 6], (3) 

where 0=2.556 A, E=10.22 K for helium7 and 0 
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= 2.958 'A, E= 36.7 K for molecular hydrogen.B The 
ground-state wave function ~ is given by Eq. (1), 
where 

f. I - - 2 <p(ri) = «(3/1T)3 4e - ( B 2j(l j-Ri ) , (4) 

(5) 

The quantities (3 and K are variational parameters 
to be determined. These forms for <p and fare 
used extensively in other related works where they 
appear to have sufficient flexibility to adequately 
represent the ground state of the system. 1

-
3 They 

are also adopted here partially because of the 
stated objective to compare this approximate 
theory with other calculations. 

USing Green's theorem and with Eqs. (1), (4), 
and (5), Eq. (2) becomes 

(If) =3:!(3 + (~1~) -1 L J ~2v(rjj}tlr1' " drN, 
I<j 

(6) 

where 

(7) 

For the purposes of this calculation, it is conve­
nient to rewrite Eq. (6) in the following form: 

(If)= 3::(3 + (~1~) -1i: J <p2(r ~ )<p2(r . ) 
x< • 

where 

N 

C(rx, r.) = J II f2(rlj) 
i < i "( x,.) 

N 

x III <p(r.)/2dr1···(drxarK)-1.··drl(' 
&;1II! A,K 

(9) 

The parentheses around the term (arxar. )-l in­
dicate that integrals over the enclosed variables 
are deleted. At this pOint the calculation is exact 
and it is here that different theoretical descriptions 
diverge. An examination of Eq. (9) shows that 
each particle in the system is dynamically coupled 
to every other particle through the pair-correlation 
functions fer I i )' It is therefore obvious that a 
drastic approximation is necessary to reduce this 
coupled N -body problem to a tractable form . 

In the Nosanow Cluster-expansion approxima­
tion, 9 evaluated to second order, the approximation 
is very drastic. It is assumed that C(rx, r . ) "" 1. 
The supporting argument is that the f er) in Eq. (9) 
have already reached their asymptotic values of 
unity for values of r where the integrand in Eq. (8) 
is large. Under these conditions, the volume in-

tegration of nsl <p (r s) 12 terms in Eq. (9) give unity. 
This was the first approximate calculation to yield 
reasonable results for solid helium even though, by 
present standards, the results are not very good. 
A serious flaw in the cluster expansion as an 
ultimate theoretical description was pointed out by 
Guyer. 10 He showed that the only possible wave­
function resulting from an internally self-con­
sistent solution was a nonlocalized liquid-state 
function. 

In view of the deficiencies in the cluster-ex­
panSion method and other approximate theories, it 
is apparent that the behavior of each molecule 
depends strongly on the influence of large numbers 
of neighboring molecules. Equations (8) and (9) 
show that the effect of all N-2 other molecules on 
an arbitrary dynamical pair, hereafter labeled 
(A, K), is embodied in C(r x, r . ). The work pre­
sented in this article is directed at accounting for 
this local molecular field acting on each pair (A, K) 
and produced by the presence of the N -2 other 
molecules. The major approximation underlying 
this calculation is contained in the expression 

N 

C(rx,r. )"" II JU2(r x.)F(r • • )<p2(rs-Rs)drsJ. 
• • ).. K 

(10) 

This expression for C{"rx, r.) differs from Eq. (9) 
in that it contains no direct correlations between 
the N -2 atoms compriSing the molecular field 
which acts on (A, K). That is, the f(rlJ) which 
connect molecular-field atoms to one another are 
miSSing in Eq. (10). Only those pair correlations 
which directly link the N-2 atoms of the molecular 
field to the dynamical pair (A, K) are considered. 
This approximation is essential in that it sim­
plifies the problem to the extent that a tractable 
solution is possible which still preserves the 
important features of the system's behavior. 

B. Static-field approximation 

The lowest-order approximation which takes into 
account the local field acting on a pair (A, K) , due 
to the N-2 other molecules, is a static field. That 
is, all N-2 contributing molecules are fixed at 
their equilibrium lattice sites. This is opera­
tionally accomplished by taking the limit 

lim 1 <p(rj -RIW -6(ri -HI) 
6-00 

for all i ,0 .. , K in Eq. (9). Then 

(11) 

In an earlier workll this expreSSion was further 
simplified by limiting the products over (i , j ) to 
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include only nearest neighbors of molecules (A, K). 
Then each function PCr A -H;) was expanded about 
its value evaluated at the equilibrium lattice site 
r A = RA, and angle averaged. This procedure was 
similarly applied to the PCr, -Hi)' The_expectation 
value of the Hamiltonian [Eq. (8)] then reduced to 
an easily soluble two-dimensional integral. Al­
though the results were fairly promising, it was 
later established that the expansion of the f(r) 
about their equilibrium lattice p·ositions converge 
satisfactorily only for a limited class of pair cor­
relation functions, namely those which reach their 
asymptotic values for values of r '$ R o, where R o 
is the equilibrium nearest-neighbor separation. 
This limited variational capability was considered 
unsatisfactory and the procedure was therefore 
abandoned. 

A more direct approach, hereafter called the 
"static-field" approximation, is to evaluate Eq. 
(11) exactly but only for a limited number of cor­
relations. In bcc solid helium, for example, only 
pair correlations between atoms within three 
nearest-neighbor shells of atom A have any appre­
ciable effect on the behavior of the Ath atom and 
similarly for the Kth atom. All the other f(r) in 
Eq. (11) can be replaced by unity with the effect of 
changing predicted ground-state energies by less 
than 1%. For fcc molecular hydrogen, two nearest­
neighbor shells are sufficient to produce equivalent 
accuracy. The C(r)." r K ) resulting from this proce­
dure was substituted into Eq. (8) and the lattice 
sum was evaluated for all different (A, K) pairs up 
to tenth nearest neighbors_ Beyond that, lattice 
sums were evaluated for a classical static lattice. 
The error associated with this lattter procedure 
is extremely small, on the order of 0.1%. The 
six-dimensional integrals in Eq. (8) were evaluated 
on a 7094 computer. Although the results are 
reasonably good at low pressures, their agree­
ment with experiment becomes considerably worse 
as the pressure increases. Another disquieting 
feature of the calculation is that the minimum ener­
gy is obtained at all volumes for a value of the 
parameter J3 = O. The energy actually varies quite 
slowly with J3 for small (3. In the cluster expan­
sion, J3 = 0 implies that the solid is not stable 
because the functions cp (r) in Eq. (1) are no longer 
spatially localized. This difficulty does not exist 
in the static-field approximation because Crr )., r K) , 

rather than being unity as in the cluster expansion, 
is instead given by Eq. (11). The resulting internal 
field, acting on (A, K) produce the restoring force 
necessary to localize the atoms about their equilib­
rium lattice sites {R;}. This localization is 
evident upon calculating the single-particle distri­
bution function R(r), in terms of the atomic dis­
placement from equilibrium, r = / r; -H; /. These 

data are presented in Sec. IlIA. Nevertheless, the 
static-field approximation is, in some sense, in­
ternally inconsistent. On one hand the molecular­
field atoms are initially fixed on their equilibrium 
lattice sites by taking the limit (3 - 00 , yet the 
minimization of the energy gives the result J3 = 0 
for the test particles (A, K). 

C. Dynamic-field approximation 

It is believed that the lack of good agreement 
between the static field results and experiment is 
due primarily to the rigidity of the lattice produc­
ing the local molecular field on (A, K). As an exam­
ple, when an excursion of particle A takes it into 
close proximity to molecular-field atom j, the 
molecular-field atom will tend to move out of the 
way. This cannot happen in the static-field ap­
proximation. The motion of (A, K) is, therefore, 
restricted. In order to correct this deficiency in 
the theory, the motion of nearest neighbors to 
molecules A and K has been incorporated into the 
calculation of the molecular field. Then 

S ;Jtlfn A Pi'! nl'l K 

' =nn)., j=nnK 

(12) 
,==nnA K 

where the primes indicate that the product is not 
to include index A or K, nnA - nearest neighbors 
to particle A, nnAK - nearest neighbors to parti­
cles A and K. 

N,(r)., r.) = f p(r,,")f2 (r K,)cp2(r, -H,) dr, . (14) 

The first two products in Eq. (12) include all atoms 
which are second- or third-nearest neighbors to 
A or K. These products are simply the static-field 
terms. As in the static-field approximation, pair 
correlations beyond third-nearest neighbors are 
neglected, a procedure which leads to no appre­
ciable error. The third product in Eq. (12) ex­
tends over all nearest neighbors to A except for K. 

As an example, consider a bcc lattice with (A, K) 

nearest neighbors. Then there are seven terms in 
that product. The fourth product in Eq. (12) is, of 
course, similar to the third. The last product 
does not exist in this case because there are no 
nearest neighbors common to both A and K when 
they themselves are nearest neighbors. When A 

--
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and K are second-nearest neighbors, however, 
there are four atoms which are nearest neighbors 
to both A and K. Then, the last three products in 
Eq. (12) each contain four terms. Slightly different 
results are, of course, obtained for fcc and hcp 
structures. When A and K are third-nearest neigh­
bors or greater we simply return to the static­
field approximation, in which case 

MirK) "" j 2\rK-Rj ), 
(15) 

Again, for (A, K) separated farther than tenth­
nearest neighbors, the lattice sums are simply 
taken over a static lattice. Clearly, it is the in­
tegrals Nand M in Eq. (12) which provide the 
dynamical correlations connecting atoms (A, K) to 
the local field. Although the atOl,ns responsible for 
the local field couple dynamically to atoms A and 
K, they do not couple dynamically to one another, 
as evidenced by the separable integrals in Eq. (12). 
The reason for this fortunate circumstance is, of 
course, traced to the original approximation, 
exhibited in Eq. (10). This separability reduced an 
impossibly complex analysis to that of evaluating 
a simple nine-dimensional integral on the 7094 
computer. The details of this procedure are dis­
cussed in the Appendix. 

To summarize, the dynamical motion of the 
molecular-field atoms and the effect of this motion 
on the various pairs (A, K) considered only when A 
and K are either first- or second-nearest neighbors 
to one another. Then only molecular-field atoms 
which are nearest neighbors to A and/ or K are 
dynamically incorporated into the analysis. All 
other pair correlations are with a static field. It 
is clear that the dynamical correlations have been 
incorporated only into the leading terms in the 

6 
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FIG. 1. Energy vs volume for solid bec 3He. A com­
parison is made with different theoretical and experi­
mental works. 

lattice sum, that is, for all first- and second­
nearest-neighbor pairs. Nevertheless, this is 
sufficient to dramatically improve the results. 
Additional dynamical contributions are found to be 
small. 

Within the dynamic-field approximation, the 
Single-particle distribution function R(r) is Simply 

(16) 

where dn A is the element of solid angle for the Ath 
particle, G(r., r Aj is given by Eq. (11), and the 
normalization R(O) = 1.0 is used. A similar ex­
pression as Eq. (16) exists for the root-mean­
square atomic deviation from its equilibrium lattice 
site ( r2)l k . The pressures and compressibilities 
are derived by taking appropriate derivatives of 
the ground-state energy with respect to the volume. 

m. RESULTS AND DISCUSSION 

A. Static-field approximation 

Results for the ground-state energy of solid bcc 
3He and 4He are presented on Figs. 1 and 2. We 
are not concerned with the fact that solid helium 
also exists in a close-packed lattice phase because 
the energy difference between different structures 
are known to be very small. In these figures, the 
circles represent the experimental datal2 and the 
dotted line represents the results of the static:­
field approximation. The triangles represent the 
Monte Carlo (Me) calculation of Hansen and 
Levesque l and the inverted triangles represent a 
similar MC calculation by Hansen and Pollock. 2 

Although the static-field results compare reason-
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FIG. 2. Energy vs volume for solid 4He. A compari­
son is made with different theoretical and experimental 
works. 
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FIG. 3. Single-particle distribution function R(r) for 
solid 4He at two different volumes, as a function of the 
particle displacement from equilibrium r. The results 
of two different approximation methods are compared 
to one another and also to results from a Monte Carlo 
calculation. 

ably well with experiment and with the MC results 
in the volume range shown, the comparison be­
comes increasingly unfavorable as the molar 
volume is decreased. 

The single-particle-distribution function R(r) 
for 4He, at several different volumes, is shown 
on Fig. 3 as a function of the particle displace­
ment from equilibrium r= Ir; -Hil. The circles 
represent the results of the static-field approxima­
tion, from which it is evident that the atoms re­
main localized despite the fact that f3 = ° mini­
mizes the energy. These results are compared 
with the MC results of Hansen and Levesque, 1 

which are represented by the triangles. The val­
ues of K which minimize the energy in the static­
field approximation are larger than those derived 
from Me calculations. 1.2 This is understandable 
because, with f3 = 0, the various !(r. -Hj ) are 
entirely responsible for providing the localization 
necessitating a larger K value . 

As mentioned earlier, it is believed that the re­
sults of the static-field approximation are not 

totally satisfactory because of the rigidity of the 
lattice of atoms providing the local field. The 
dynamical motion of an arbitrary atom A is in­
hibited because the fixed atoms confine A to a 
smaller effective volume than it would have if the 
atoms producing the local field were allowed to 
move in response to the motion. This situation 
apparently becomes more critical at higher pres­
sure where the effective volume per atom is 
further reduced. McMahan13 has recently cal­
culated the exchange integral J for solid 3He by an 
approach that is apparently very similar to the 
static-field method. Although his results are 
reasonable at low pressure, they become in­
creaSingly unfavorable as the pressure increases. 
McMahan concludes as we do that the rigidity of 
the lattice is to blame and that this effect is more 
pronounced at higher densities. 

The solution then is to properly describe the 
motion of the molecular-field atoms and the effect 
of this motion on all dynamical pairs (A, K). The 
results of this dynamic-field approximation are 
now described. 

B. Dynamic-field approximation 

1. 3He data 

Results for solid 3He are presented in Table 1, 
where ( T ) and ( V) are the expectation values of 
the kinetic and potential energies, respectively, 
and E o is the total ground-state energy. The 
quantities f3 and K are values of the variational 
parameters which minimize the energy and (r 2) 1/2 
is the root-mean-square atomic deviation from 
the equilibrium lattice site. Pressures and com­
pressibilities are also tabulated. It should be 
kept in mind that all work on helium was done 
using a bcc lattice structure. Although the total 
energy, pressure, and compressibility do not 
differ significantly from one assumed lattice 
structure to another, the quantities < T ) , < V) , and 
(r 2

) 1/2 are somewhat more sensitive and any 
comparisons with other work must be made with 
this fact in mind. 

Figure 1 shows the ground-state energy for 3Re 
over the volume range 19 ~ V~ 24.5 cm3/ mole. The 

TABLE I. bec 3He results. 

Volume (V ) (1') E o Pressure Compressibility (r2) 1n {3 K 

(cm3/ mole) (K) (K) (K) (atm) (104 atm-1) A (a-2) (a-1) 

24 .50 -22.19 21.94 -0.25 1.18 3.6 1.11 
20 .80 -26.98 28.38 1.40 50 23.8 1.06 4. 1 1.11 
16.16 -32 .31 41.12 8.81 260 7 .0 0.85 6.5 1.08 
14.00 - 32.21 51.43 19.22 565 3.9 0. 75 8. 7 1.06 
11 .82 -24.76 69.70 44.94 1380 1.8 0.62 12 .5 1.04 
10.25 -8.30 92 .25 83.95 2820 0 .7 0.52 19.0 1.02 
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circles represent experimental data,12 the triangles 
are the MC results of Hansen and Levesque,1 and 
the inverted triangles are the MC results of Hansen 
and Pollock. 2 The solid line represents the dy­
namic-field results, the dotted line is the static­
field results, and the dashed line represents the 
theory of Horner. 14 A sample comparison of our 
calculated energy and that of Hansen and Levesque 
at V = 24.3 cm3/ mole is E = 0.21 and 0.63 K, re-

. spectively. Similarly, at V = 19.12 cm3/ mole, the 
comparison is E = 4.01 and 4.07 K, respectively. 
It is interesting to observe that results of the two 
MC calculations differ from one another by 
amounts that are significantly outside the statisti~ 
cal error quoted in either article. There are, 
however, modest differences in the two calcula­
tions which could account for this fluctuation. The 
dynamic-field approximation requires the evalua­
tion of a nine-dimensional integral. These inte­
grals have been evaluated with sufficient accuracy 
to conservatively guarantee the resulting energy 
values to within - 3%. In view of the fluctuation in 
the MC results we conclude that they and the dy­
namic-field results are in agreement. The energy 
minimizing values for (3 and K, listed in Table I, 
also compare well with the MC results, unlike the 
values derived from the static-field approximation. 
Figure 4 shows the ground-state energy over a 
greater volume range 10 .. V .. 24.5 cm3/mole. A 
sample comparison of our calculated energy with 
that of Hansen and Pollock at V=11.17 cm3/mole 
gives E=54.17 and 52.5 K, respectively. We ob­
serve, as do Hansen and Pollock, that the energy 
falls below the experimental values at low volumes. 
This is attributed to the inexact description of the 
pair interaction provided by the Lennard-Jones 
6-12 potential. 5 Figure 5 shows the pressure­
volume (PV) relationship and, in Fig. 6, is the 
Single-particle distribution function R(r) for six 
different volumes. These data are tabulated in 
Tables I and II. The compressibility is shown in 
Fig. 7 and compared with experiment over the 

100 --- Dynamic field 

!Kl 3tle <:J Monte carlo 
(Hansen-PollockI2 

g 60 
0 Experlment12 

>-
E' 
'" «l c: .... 

ZO 

12 14 16 18 ZO 22 
Volume (cm3/mole) 

24 26 

FIG. 4. Energy vs volume for solid 3He over the 
volume range 10 < V :5 24.5 cm3/ mole. A comparison 
is made with other theoretical work and experiment. 

30 

25 

~ ZO 

S:: 
IS 

l!! 
~ 10 l!! 

C>. 

--- Dynamic field 
o Experimentl2 
<:J Monte carlo 

(Hansen -Pollock)2 

10 12 14 16 18 ZO 22 24 26 
Volume (cm3/mole) 

FIG. 5. Pressure vs volume for solid 3He. A com­
parison is made with other theoretical work and experi­
ment. 

volume range 10 .. V .. 24.5 cm3/ mole. These re­
sults are substantially more uncertain than the 
energy because they involve a second derivative 
of the energy with respect to the volume. 

2. 4 He results 

The calculated data for solid 4He are presented 
in Table m. Figure 2 shows the ground-state 
energy over the volume range 16 .. V .. 21.65 cm3/ 
mole. Similarly, Fig. 8 shows the energy over a 
greater volume range 10 .. V .. 21.65 cm3/ mole. 
The experimental data 12 and other theoretical re­
sults are presented with the same format as Figs. 
1 and 4 for 3He. A sample comparison of our 
calculated energy and that of Hansen and Levesque 
at V=21.49 cm3/mole is E=- 5.14 and -5.17 K, 
respectively. Similarly, at V = 17.08 cm3/ mole, 
the comparison is E = -2.63 and -2.39 K, respec­
tively. A comparison with Hansen and Pollock's 

1.0 Volume 
(cm3/mole) 

0 24.5 
0.8 0 ZO.8 

D 16. 16 
c:. 14.0 
(J 11.82 

0.6 0 10. 25 

Rlr) 

0.4 

0.2 

0.2 0.4 0.6 0.8 1.0 
rIo) 

FIG. 6. Single-particle distribution function R(r) vs 
particle displacement from equilibrium for solid 3He 
at various volumes. 
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TABLE n. R (r) data for 3He. 

Volume Particle displacement from equilibrium rea) 

(cm3/mole) 0 0.05 0.10 0.15 0.20 

10.25 1.00 0.928 0.717 0.466 0.254 
11.82 1.00 0.935 0.757 0.559 0.363 
14.00 1.00 0.957 0.824 0.480 
16.16 1.00 0.961 0.85 9 0.567 
20.8 1.00 0.975 0. 905 0 .688 
24.5 1.00 0.922 0.738 

work at V=11.17 cm3/ mole gives E=32.06 and 
30.15 K, respectively. Again, it is evident that 
there is close agreement between experiment, the 
MC calculation, and the dynamic-field results. As 
for 3He, however, calculated results lie slightly 
below experiment at the higher pressures. Figure 
9 shows the PV results and Figs. 3 and 10 give the 
single-particle distribution function for solid 4He 
for various molar volumes. Note the considerable 
narrowing of R{r) with decreasing molar volume. 
Figure 3 shows a comparison of results for R{r) 
at V= 21.6 cm3/ mole obtained from the static-field 
approximation and from the dynamic-field approx­
imation. As expected, the static-field approxima­
tion yields a narrower R{r) indicating that the 
particle is more localized about its equilibrium 
lattice site than is predicted by the dynamic-field 
approximation. This result, of course, confirms 
our speculation that the static molecular field 
confines A and K more than if the molecular-field 
atoms also are allowed to dynamically respond to 
a changing environment, as provided for in the 
dynamic-field approximation. Also shown in Fig. 
3 is the MC solution l for R{r). The close com­
parison with the dynamic-field approximation is 
evident. The data for R{r) is tabulated in Table IV. 

3. Molecular-hydrogen results 

In Fig. 11 the energy of molecular hydrogen is 
presented over the volume range 10 :;; v:;; 22.65 

50 -- Dynamic field 
3He 0 Experimentl2 - Monte Carlo2 , 

40 9 ~ (Hansen -Pollock) 
S 30 
~ 
:.:; 
.~ 20 
~ 
Q. 

E 
0 10 u 

14 16 18 20 
Volume (cm3'molel 

22 24 10 12 

FIG. 7. Compressibility vs volume for solid 3He. 

0.30 0.40 0.50 0.60 0.70 0.80 

0 .042 0.0035 
0 .107 0.019 0.0018 
0.206 0.060 0.012 0.0015 
0.293 0.117 0.036 0.0078 
0.445 0.246 0.116 0.046 0.0148 0.0039 
0 .5 15 0.317 0.173 0.083 0.034 0.012 

cm3/ mole. All calculations on H2 are based on an 
fcc lattice structure. The solid line represents 
the results of the dynamic-field approximation 
and the squares show the MC calculations of 
Bruce.3 The triangles display the Heitler-London 
results of Etters, Raich, and Chand l 5 and the 
inverted triangles represent a Domb-Salter l 6 

approximation scheme. At normal vapor pressure, 
V= 22.65 cm 3/ mole, the dynamic-field calculation 
gives a ground- state energy Eo = -85 K, which is 
virtually identical to the MC result of Bruce. At 
V= 11.39 cm 3/ mole, a comparison of our work 
with Bruce' s gives E = 444.71 and 445.34 K, re­
spectively. Similarly, at V= 8.34 cm3/ mole, the 
comparison is E = 2296.51 and 2300.83 K, respec­
tively. The dynamic-field and the MC results 
agree closely over the entire volume range, but 
not with the Heitler-London l 5 and Domb-Salter l 6 

calculation, especially at the lower densities. 
This is not surprising since the latter two calcu­
lations are inherently unreliable at low pressure. 
In Fig. 12, the energy is displayed for the volume 
range 5 :;; V:;; 11 cm3/ mole. The comparisons an<;l 
format are identical to Fig. 11. It is apparent that, 
at these high pressures, the results of all four 
calculations displayed here are in fair agreement 
with one another. However, the MC data of Bruce 
extends only to V=9.34 cm3/ mole. The pressure­
volume data is shown in Fig. 13 for the volume 
range 10:;; V:;; 22.65 cm 3/ mole. In addition to the 
format of Figs. 11 and 12, the experimental data 
of Stewart17 are displayed as circles. It is appar­
ent that, at low molar volumes, the different 
theoretical calculations all predict pressures 
considerably higher than experiment. 17 Until re­
cently, it was considered possible that this dis­
crepancy was due to experimental effects. How­
ever, recent measurements indicate that the 
original data was reasonably accurate. 16 It also 
appears certain that the theoretical calculations 
are fairly accurate at high densities. 15 Hence, 
the discrepancy between theory and experiment is 
almost certainly due to the poor representation of 
the pair interaction provided by the Lennard-Jones 
6-12 potential. In Fig. 14 the pressure calculated 
over the volume range 5 :;; V:;; 11 cm3/ mole is 
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TABLE III. bee 4He results . 

Volume (V) (T) Eo 
(cm3/ mole) (K) (K) (K) 

21.60 -27 .48 22.29 -5 .19 
17 .50 -34 .27 30 .85 -3 .42 
15 .50 -38 .9 39 0.1 
13 .75 -40 .46 49.07 8 .61 
11 .82 -40 .46 65 .83 25 .37 
10 .25 - 31 .25 83.42 52 .17 

presented. The close agreement of the dynamic­
field results to those derived from the Heitler­
Londonl5 and Domb-Salter l 6 calculations indicates 
that the overlap of the wave function between 
neighboring sites is very small at these pressures. 
otherwise, these latter two approximate methods 
would not yield satisfactory results. The results 
confirm the claim 15 . 16 that solids become more 
and more classical in behavior as the pressure is 
increased. The data for H2 are tabulated in Table 
V. 

[v. CONCLUSIONS AND DISCUSSION 
OF APPROXIMATIONS 

There are two features of the Monte Carlo cal­
culations that make them suspect at high pres­
sures. At high enough pressures, the number of 
atoms contained in a volume sufficiently large to 
simulate the bulk system becomes great, perhaps 
beyond available computer resources. Then any 
proposed solution requires a compromise which 
weakens the integrity of the results. In addition, 
the Monte Carlo program may not sample phase 

60~ 
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50 
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o Experiment l2 
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FIG. 8. Energy vs volume for solid 4He over the 
volume range 10 :5 V :5 21.65 cm3/mole. A comparison 
is made with other theoretical work and experiment. 

. 

Pressure (r2) 112 (3 K 

(atm) (A) (a- 2) (a-I) 

1.03 4 .5 1.13 
93 0 .83 5.7 1.13 

250 0 .76 8. 0 1.12 
500 0 .64 11 .5 1.11 

1035 0 .56 15.0 1.10 
1790 0 .48 20 .0 1.10 

space ergodically at high pressure because the 
close-packed repulsive potential cores give rise 
to walls of very low probability surrounding regions 
of high probability. This difficulty has been well 
documented for a collection of hard disks.4 We 
have been concerned that the poor agreement at 
high pressures between the MC results for helium 
and experiment is from one of these effects. The 
close comparisons between the dynamic-field cal­
culations and the MC workl. 2 dispell that concern, 
however, because the dynamic-field approximation 
is in no way limited at high pressures. In addi­
tion, the unsatisfactory nature of the Lennard­
Jones 6-12 potential at high pressure has also 
been demonstrated by others, using a Simplified 
theoretical approach. 5 

The variational parameter K, which minimizes 
the energy, remains essentially constant at all 
volumes for both helium and hydrogen. For mo­
lecular hydrogen this parameter remains very 
near K '" 1.13 over the entire volume range 5 "" V 
"" 22.65 cm3/ mole. This general result agrees 
completely with the findings of Hansen and Pollock 
on helium2 but not quite so well with those of 
Bruce on hydrogen. 3 The results of Bruce are 
admittedly not calculated to high accuracy and it 
is' our opinion that K is approximately density in­
dependent. We agree with Hansen and Pollock that 

25'0 
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FIG. 9. Pressure VB volume for solid 4He. A com­
parison is made with other theoretical work and experi­
ment . 
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1.0 
4He Volume Icm3/mole) 

o 21.6 
o 17. 5 

0. 8 o 15.5 
6 13.75 
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0.6 

Rlr) 
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F IG. 10. Single-particle distribution function R(r) VB 

particle displacement from equilibrium for solid 4He at 
various volumes. 

this result illustrates the importance of pair cor­
relations at all pressures but it is worth empha­
sizing that approximate approaches such as the 
Heitler-London method and the Domb-Salter 
approximation also properly account for these 
correlations at high pressures. With increasing 
denSity, the dependence of the energy upon the 
parameter (3 becomes increasingly weak. That is, 
the energy minimum with respect to (3 forms a very 
shallow well. Hydrogen, for example, has an 
energy minimum at 9 cm3/ mole for p:::: 150. How­
ever, for f:J = 100, the energy is less than 1% 
greater than the minimum value. The physical 
implications of this result are not fully understood. 
Because of this relatively weak dependence of the 
energy on (3, the minimizing values of (3 listed in 
the tables are not very accurate at the higher 
pressures. 

An important approximation in the dynamic-field 
method is the cutoff of products of two-body-cor­
relation functions f(rjj). The products retained in 

cerA, r K) are the correlations of molecules A and 
K to their first-, second-, and third-nearest 
neighbors. The functions f outside this range are 
replaced by unity. Some idea of the effect of this 
apprOXimation can be seen in Table VI where ( T ) , 
(V) , and Eo are presented for a typical 4He calcu­
lation of 21.6 cm3/ mole. These results are dis­
played as a function of the number of nearest­
neighbor shells contained in the product of pair­
correlation functions f(rjJ}. As can be seen from 
the table, these results converge quickly even 
though the f(r) used in this study are fairly long 
ranged. Most of the results for H2 were obtained 
with a second-nearest-neighbor cutoff in products 
of f (r), a procedure which resulted in negligible 
error. 

As mentioned earlier, the integrals in the lattice 
sum of Eq. (8) were calculated exactly only for the 
first ten nearest-neighbor shells. The contribu­
tions from remaining shells are evaluated for a 
static lattice. It was found that over the range of 
densities studied, the energy could be determined 
to within 0.5 K if only the contributions from· the 
first four nearest-neighbor shells were calculated 
exactly, with the other shells being evaluated for 
a static lattice. This approximation is made in 
most Monte Carlo studies. 1- 3 The use of static 
lattice sums after ten nearest-neighbor shells 
leads to negligible error. Some idea of the magni­
tude of contributions to the energy from different 
nearest-neighbor shells can be seen in Table VIT. 
This table contains contributions to (T), (V), and 
Eo from different groups of nearest-neighbor 
shells for 4He at 21.6 and 10.25 cm 3/ mole. As can 
be seen from this table, the contributions from 
the first two nearest-neighbor shells are very 
large at low density. The contributions from other 
shells become increasingly important with higher 
densities. However, the contributions from the 
first four or five shells dominate the total energy 
even at these high densities. 

TABLE IV. R (r) data for He4 

Volume Particle displacement from equilibrium r (a) 

(cm3/ mole) 0.0 0.05 0.10 0.15 0.20 0 .30 0.40 0 .50 0 .60 0.70 0. 80 

10.25 1.00 0 .916 0.681 0.417 0.207 0.027 0.0012 
11.82 1.00 0.922 0.730 0.495 0 .292 0.064 0.0070 
13. 75 1.00 0.955 0.809 0.412 0.133 0.026 0.0028 
15.50 1.00 0.829 0.484 0.217 0 .068 0.019 0.0022 0.0019 
17.50 1.00 0.862 0 .587 0.319 0.137 0 .045 0.011 0.011 0.0028 
21.60 1.00 0.901 0 .675 0.424 0.227 0.102 0.038 

Static-field approximation 

10.25 1.00 0.885 0 .610 0.323 0 .130 0.0084 0.00015 
21.60 1.00 0 .975 0.902 0.657 0.380 0 .168 0.054 0.013 0.0022 0.000 32 
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FIG. 11. Energy vs volume for solid fcc H2 over the 
volume range 10 :S V :S 22.65 cm3/mole. A comparison 
is made with other theoretical work. 

Figure 15 contains a comparison of the single­
particle distribution function and e - 8T 2 for 4He at 
two specific volumes. The quantity e -BT 2 would be 
the single-particle distribution function if the wave 
function did not contain pair correlations. This 
figure, therefore, gives some indication of how 
much the pair correlations contribute to localizing 
the individual molecules about their equilibrium 
lattice sites. Note that the pair-correlation func­
tions are responsible for a substantial portion of 

4 

7 8 9 
Volume (cm3/mole) 

10 11 

FIG. 12. Energy vs volume for solid fcc H2 over the 
volume range 5 :S V :s 11 cm3/mole. A comparison is 
made with other theoretical work. 
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FIG. 13. Pressure vs volume for solid fcc H2 over the 
volume range 10 :S V :S 22.65 cm3/ mole. A comparison 
is made with other theoretical work and experiment. 

the localization at both volumes tested. 
To recapitulate, the principal apprOXimation of 

this calculation is the decoupUng of pair correla­
tions between different molecular-field atoms, as 
exhibited by Eq. (10). This approximation together 
with the others already discussed earlier in this 
section, have lead to a theoretical description of 
solid 3He, 4He, and H2 which is essentially in very 
close agreement with the results of Monte Carlo 
calculations. The agreement with experiment is 
also excellent, except at high pressures, where, 
for both helium and hydrogen, the poor compari­
sons are attributed to an inadequate representation 
of the pair potential. 

Several major advantages over the Monte Carlo 
work accrue to this method of calculation. In 
addition to the considerably less computational 
effort required and the physical inSight afforded 
by the the successful apprOXimation teChniques, 

12 

10 

2 

5 

--- Dynamic field 
o Monte Carlo3 

(Bruce) 
6. Domb-Salterl6 

" Heitier -london 15 

11 

FIG. 14. Pressure vs volume for solid fcc H2 over the 
volume range 5 :S V :s 11 cm3/mole. A comparison with 
other theoretical work is made. 
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TABLE V. Results. 

Volume (V) (T> 
(cm3/ mole) (K) (K) 

23.30 -150.5 65.5 
18.52 -188.0 126.0 
13.99 -149.0 243.5 
12 .35 - 25.5 297.5 
1111 159.0 353.5 

9.26 
7.72 
6.17 
5.56 
5. 14 

it is in principal possible to determine and solve 
the coupled differential equations for the optional 
form of cp and f which minimize the energy. This 
is possible because the dynamics of only a limited 
number of particles are involved. Another valuable 
feature is that the exchange energy can be calcu­
lated in a Simple direct fashion. Work on this 
problem is in progress. 

APPENDIX 

To evaluate e(,r", r K ) for a particular value of 
r" and r K , there are a product of three-dimen-

Eo Pressure {3 K 

(K) (atm x 103) (a- 2) (a-I) 

- 85.0 7 1.19 
-62 .0 1.06 30 1.14 

94 .5 6.12 67 1.12 
272 .0 11 .95 80 1.11 
512 .5 21 .69 95 1.10 

1306 60 .1 150 1.12 
3120 147.7 300 1.10 
8290 454.9 375 1.10 

12280 726.0 500 1.12 
17000 998 .0 650 1.12 

sional integrals to solve, Le., 

e(f", f . ) - II M1rr")Mj(r.)N,(r,,, f.), (17) 

'.j .1 

where NI ,M1 are defined by Eqs. (13) and (14). 
The products extend over all different nearest 
neighbors to particles (A, K). Let the integrand of 
M,(f,,) be Irr", f" HI) and of N,(r", r.), Hrr", r., 
f" HI)' A Monte Carlo integration routine is used 
to evaluate these integrals, in which case they are 
expressed as sums: 

e(r", r .) - II 0-1 :t In(r", fin, H,)), (N- 1 t In(f., fjn, Hj))j (N- 1 :t H"(f,,, f., f /", HI)), . 
I.j., " =1 n=1 n=1 

(18) 

In a bcc lattice structure and with (A, K) nearest 
neighbors, there are 14 such three-dimensional 
integrals (sums). The index n on the set of vectors 
II,.J./{r,n. fjn. f,,,} specifies a particular value for 
these 14 vectors, selected at random. Each three­
dimensional integral in Eq. (18) is evaluated by 
summing the N values of its integrand, obtained 
using the N randomly selected vectors {f l ,,}, and 
then dividing by N. It is important to note that the 
integral Mlrr,,) with integrand I(r", r" HI) and 
Mjrr~J with integrand Irr", f j , Hj), i*j, are in­
dependent of one another with respect to the vari-

abIes fl and f j • Clearly, every integral in 
err", r.) is independent of one another in the set 
of variables Il1.i,/{rl, rj, r/}' This means that the 
same randomly selected vector, a" , which is used 
to evaluate one integrand at one point, may also be 
used to evaluate the integrands in all the sums of 
Eq. (18). 

Hence, instead of selecting 3 x 14 different 
random values to define the vectors in the set 
II, ,j,/{f ,n , fjn, fin}, at one point in phase space, 
a Single vector an can be used to evaluate the 
integrand in each of the 14 sums. This, of course, 

TABLE VI . Product of correlation functions approximation. Energy calculated from the 
dynamic-field approximation incorporating pair correlations between particles (A, K) and their 
first; first and second; or first, second, and third shells of nearest neighbors. 

Number offtrlj ) products (V) (T> (Eo> 
in calculation of G(r" , r.) (K) (K) (K) 

1st-nearest neighbors -24.10 20.40 -3.70 
1st- and 2nd-nearest neighbors -25 .17 19.95 -5.22 
1st-, 2nd-, and 3rd-nearest neighbors -25.10 19.95 -5.15 
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TABLES VII. Energy contribution from different nearest-neighbor shells in lattice sum . 

Volume 
(cm3/ mole) 

21.60 

10.25 

Nearest-
neighbor 

shell 

1st 
2nd 

3rd-10th 
11th-38th 

Total 

1st 
2nd 
3rd 
4th 

5th-10th 
11th-38th 

Total 

Contribution 
to (V) (K) 

Dynamic Rigid 
field lattice 

-14.95 
-6.64 
-5 .33 
-0 .39 -0.39 

-27 .31 

+8.77 
-11.45 
-8.19 
-5.52 -5 .69 
-4.93 -4.96 
-1.74 -1.74 

-23.06 

simplifies the evaluation considerably. GCr", r K ) 

is then substituted into Eq. (8) and the resulting 
six-dimensional integral is solved to obtain the 
energy. 

As an experiment, it was decided to constrain 
the motion of the atoms comprising the molecular 
field in such a way that they all move in concert 

Contribution Contribution 
to(T) (K) to Eo (K) 

Dynamic Rigid Dynamic Rigid 
field lattice field lattice 

12.50 -2.45 
2.38 -4.26 
0.97 -4 .36 
0.03 0.03 -0.36 -0 .36 
6.25 = 3112(3 / 4 'n +6.25 

22.13 -5 .18 

42.45 51 .22 
8.92 -2.53 
1.84 -6.35 
1.03 1.00 -4.49 -4.69 
0.70 0.70 -4.23 -4.26 
0.15 0.15 -1.59 -1.59 

27.80 = 31f2(3 /4m +27.80 
82 .89 59 .83 

about (A, K) as a single entity. That is, the dis­
placement vectors of all nearest-neighbor mo­
lecular-field atoms are taken to be the same, 
cYn=rjn-H;, i=I,2, ... , 14), in each configuration 
used in evaluating G(r", r.). The Yn are selected 
randomly to generate other configurations. Then, 
Eq. (18) becomes 

G(r", r.)-N-l ±( II In;(r", Yn, Hj)Ini(r n Yn, HJ)Hnl(r", r., Yn, H,)). 
n =1 i,J ,I 

(19) 

The value of the energy, obtained with Glr", r .) 
calculated in this fashion, agrees to within 1% 
of the exact numerical evaluation. Within the 
statistical error associated with the Monte Carlo 
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• 0 

• 0 

0.4 0.6 
rIo) 

0.8 1.0 

FIG. 15. Comparison of R(r) and e- Br2 for solid 4He 
at two different volumes. 

integration routine, the results of these two 
different methods of calculation agree completely. 
This conclusion was fortified by comparing results 
of the two methods at several different volumes 
for 3He and ·He. As a result, the calculation of 
G(rx, r K ), as expressed by Eq. (19), requires the 
solution of only one three-dimensional integral 
rather than 14 such integrals. The total energy 
then results from the evaluation of a nine-dimen­
sional integral. The considerable Simplification 
of algebraic analysis is obvious. 

Although we do not fully understand all the 
implications of this result, it does seem apparent 
that the dynamical behavior of an arbitrary pair 
(A, K) is insensitive to the relative orientations of 
the molecular-field atoms with respect to one 
another but instead depends only on their individual 
orientations with respect to (A, K). In practice the 
evaluation of Eq. (8) utilized the following proce­
dure. All of the equations were first rewritten for 
the computer program in terms of the ve.ctor dis­
placement of each molecule from its equilibrium 
lattice site. That is, the following vectors were 
introduced: 
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r=r. -R., z=r x-Rx, 
Y=rs-Rs=rp-Rp. (20) 

Six random numbers were chosen for the com­
ponents of the rand z vectors. Importance sam­
pling was used for the two random numbers chosen 
for 1 r 1 and 1 z I. It was found that biasing the other 
four variables had a much smaller effect on statis-

*Work partially supported under NASA Grant No. NGL 
06-002-159. 
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